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Introduction

Genome assembly:De-Bruijn graph

De-Bruijn graph:Reconstructing a string from a set of its k-mers
© Data structure method on genome assembly.

@ Consist of multiple K-mers which generated by genome
sequence.

© Same vertices, K-1 mers are glue together in the final step.
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ATGGAAG = TGGAAGT === GGAAGTC = GAAGTCG —= AAGTCGA — AGTCGAT

GATGGAA === CGATGGA == TCGATGG == GTCGATG

Fig. 1. The de Bruijn graph constructed from string ATGGAAGTCGATGGAAG, with & = 7.
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Introduction

Advantages

@ Next-generation sequencing (NGS) data usually comes with
large volume and short size, which has large amount of
repetitive regions.

@ Compared to 'overlap-consensus-layout’ method,De Bruijn
graph-based assembly approach handles the assembly of
repetitive regions better
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Application problem

@ Using de Bruijn graph in practice is the high memory
occupation for certain organisms

@ Human genome encoded in a de Bruijn graph with a k-mer
size of 27 requires 15GB to store the node sequences

@ Bulges and whirls occur because of sequencing errors or
repeats in the genome, so would like to be able to efficiently
add and remove edges from graph
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How to efficiently update graph while maintaining memory
space efficiency?
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Fully Dynamic de Bruijn Graphs(Belazzougui et al.
(2016))

Introduces compact, dynamic representation of De Bruijn
graph
@ Nodes and edges can be inserted and deleted efficiently
@ k-mers are represented by integers using a combination of
Karp-Rabin hashing and minimal perfect hashing.

@ A partition of the graph into a forest allows efficient
membership queries with no error.
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Project

© Implement the data structure from the paper.

@ Evaluate our data structure on graphs built from real
sequencing data.

© Compare our data structure with alternative approaches for
De Bruijn graphs
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@ Static hash function
@ "“Dynamic hash function”

@ IN, OUT matrices for storing the graph edges
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Overview of Data Structure

Static hash function

“Dynamic hash function”

IN, OUT matrices for storing the graph edges
Membership query

De Bruijn graph and forest
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@ The hashing function we use is the combination of
Karp-Rabin and minimal perfect hashing.

@ Karp-Rabin: Given a prime P and base r, a Rabin-Karp hash
function f is a function defined over the space of all strings of
length k such that f(x1...xx) = (3.7, x;r')modP.
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Hash function f

@ The hashing function we use is the combination of
Karp-Rabin and minimal perfect hashing.

@ Karp-Rabin: Given a prime P and base r, a Rabin-Karp hash
function f is a function defined over the space of all strings of
length k such that f(x1...xx) = (3.7, x;r')modP.

© Minimal perfect hashing: A minimal perfect hash function f
for S is a function defined on the universe such that f is
one-to-one on S and the range is {0,...,n — 1}.
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Hash function f

@ The hashing function we use is the combination of
Karp-Rabin and minimal perfect hashing.

@ Karp-Rabin: Given a prime P and base r, a Rabin-Karp hash
function f is a function defined over the space of all strings of
length k such that f(x1...xx) = (3.7, x;r')modP.

© Minimal perfect hashing: A minimal perfect hash function f
for S is a function defined on the universe such that f is
one-to-one on S and the range is {0,...,n — 1}.
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Hash function properties

Given a static set N of n k-tuples over an alphabet ¥ of size o,
with high probability in O(kn) expected time we can build a
function f: ¥k — {0,--- ,n — 1} with the following properties:

@ when its domain is restricted to N, f is bijective.
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Hash function properties

Given a static set N of n k-tuples over an alphabet ¥ of size o,
with high probability in O(kn) expected time we can build a
function f: ¥k — {0,--- ,n — 1} with the following properties:

@ when its domain is restricted to N, f is bijective.
@ we can store f in O(n + logk + logo)
@ given a k-tuple v, we can compute f(v) in O(k) time.
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Hash function properties

Given a static set N of n k-tuples over an alphabet ¥ of size o,
with high probability in O(kn) expected time we can build a
function f: ¥k — {0,--- ,n — 1} with the following properties:

@ when its domain is restricted to N, f is bijective.
@ we can store f in O(n + logk + logo)
@ given a k-tuple v, we can compute f(v) in O(k) time.

@ given u and v, such that suffix of u of length k-1 is the prefix
of v of length, or vice versa, we can compute f(v) in O(1)
time if we already computed f(u).
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Example of the hash function

@ A string of nucleotides has an alphabet of size 4, so we can
look at that string as a number written in base 4. For
example, we can denote A as 0, Cas 1, Gas 2, and T as 3.
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Example of the hash function

@ A string of nucleotides has an alphabet of size 4, so we can
look at that string as a number written in base 4. For
example, we can denote A as 0, Cas 1, Gas 2, and T as 3.

o If weset P as 13. "ATTC” can be hashed to
(4*-0+4%-3+42.3+4'-1)mod13.
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Example of the hash function

@ A string of nucleotides has an alphabet of size 4, so we can
look at that string as a number written in base 4. For
example, we can denote A as 0, Cas 1, Gas 2, and T as 3.

@ If we set P as 13. "ATTC" can be hashed to
(4*-0+4%-3+42.3+4'-1)mod13.

@ Similarly, "TTCG" can be computed by
(4*-3+4%3.3+4%2.1+41.2)mod13.
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Example of the hash function

@ A string of nucleotides has an alphabet of size 4, so we can
look at that string as a number written in base 4. For
example, we can denote A as 0, Cas 1, Gas 2, and T as 3.

@ If we set P as 13. "ATTC" can be hashed to
(4*-0+4%-3+42.3+4'-1)mod13.

@ Similarly, "TTCG" can be computed by
(4*-3+4%3.3+4%2.1+41.2)mod13.

@ Suppose we only have two k-mers, one qualified minimal
perfect hashing function f needs to ensure that
f("ATTC")=0and f("TTCG") =1
or
f("ATTC")=1and f("TTCG") =0 .
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If N is dynamic then we can maintain a function f as described in
1 except that:

@ the range of f becomes {0,---,3n — 1}.
@ when its domain is restricted to N, f is injective.

© the space bound for f is O(n(loglogn + loglogo)) bits with
high probability.



Fully Dynamic de Bruijn Graphs
Data Structure

Dynamic hash function

If N is dynamic then we can maintain a function f as described in
1 except that:

@ the range of f becomes {0,---,3n — 1}.
@ when its domain is restricted to N, f is injective.

© the space bound for f is O(n(loglogn + loglogo)) bits with
high probability.

© insertions and deletions take O(k) amortized expected time.
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Dynamic hash function

If N is dynamic then we can maintain a function f as described in
1 except that:

@ the range of f becomes {0,---,3n — 1}.

@ when its domain is restricted to N, f is injective.

© the space bound for f is O(n(loglogn + loglogo)) bits with
high probability.

© insertions and deletions take O(k) amortized expected time.

© the data structure may work incorrectly with very low
probability (inverse polynomial in n).
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Representation of edges in de Bruijn graph

@ The edges (E) of G are stored in two binary matrices, /N and
OUT, each of size n x |X|.

© These two matrices are used to maintained the IN and OUT
edge of each vertex. We can move each vertex forward and
backward using this information.
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Data Structure

Representation of edges in de Bruijn graph

@ The edges (E) of G are stored in two binary matrices, /N and
OUT, each of size n x |X|.

© These two matrices are used to maintained the IN and OUT
edge of each vertex. We can move each vertex forward and
backward using this information.

@ The IN and OUT matrices can be constructed as:

(U =bay...ak_1,v=a1a... ak,1C) cE
<= OUT(f(u),c) =1,IN(f(v),b) =1.
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Example of IN and OUT matrices

Here is a simple de bruijin graph:

(a)
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Data Structure

Example of IN and OUT matrices

Here is a simple de bruijin graph:

(b)

Suppose f(AGG) =0, f(GGC) = 1,f(GCT) = 2, the IN and OUT
matrices can be initialized as:
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Data Structure

Example of IN and OUT matrices

0(AGG)
1(GGC) 1
2(GCT) 0 il
_____
0(AGG)
1(GGC) 0 0 0
2(GCT) 0 0 0 0

(a)
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no k-mer is stored.
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Efficient membership query

@ Since the total graph nodes are only represented by integers,
no k-mer is stored.

@ How can we do membership queries maintaining a reasonable
memory usage?

© Our strategy is to sample a subset of nodes for which we store
the plain-text k-tuple and connect all the un-sampled nodes to
the sampled ones.
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Efficient membership query

2]

Since the total graph nodes are only represented by integers,
no k-mer is stored.

How can we do membership queries maintaining a reasonable
memory usage?

Our strategy is to sample a subset of nodes for which we store
the plain-text k-tuple and connect all the un-sampled nodes to
the sampled ones.

Given a start point, we can move forward and backward using
IN and OUT matrices. Once we reached the root, we can
check if the resulting k-mer matches with root k-mer.
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Data Structure

De Bruijn graph and Forest

@ More specifically, partition an undirected graph G into a forest
F where each T € F with o < h(T) < 3c, where h(T) is the
height of tree T, o = klogo.

De bruijn graph
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Data Structure

De Bruijn graph and Forest

@ More specifically, partition an undirected graph G into a forest
F where each T € F with o < h(T) < 3c, where h(T) is the
height of tree T, o = klogo.

De bruijn graph Constructed forest
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Data Structure

De Bruijn graph and Forest

@ More specifically, partition an undirected graph G into a forest
F where each T € F with o < h(T) < 3c, where h(T) is the
height of tree T, o = klogo.

De bruijn graph Constructed forest Adding an edge



Fully Dynamic de Bruijn Graphs
Data Structure

De Bruijn graph and forests properties

@ Given a static kth-order de Bruijn graph G with n nodes,



Fully Dynamic de Bruijn Graphs
Data Structure

De Bruijn graph and forests properties

@ Given a static kth-order de Bruijn graph G with n nodes,

@ we can store G in O(on) bits plus O(klogo) bits for each
connected component in the underlying undirected graph,
such that:
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De Bruijn graph and forests properties

@ Given a static kth-order de Bruijn graph G with n nodes,

@ we can store G in O(on) bits plus O(klogo) bits for each
connected component in the underlying undirected graph,
such that:

© checking whether a node is in G takes O(klogo) time.
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De Bruijn graph and forests properties

@ Given a static kth-order de Bruijn graph G with n nodes,

@ we can store G in O(on) bits plus O(klogo) bits for each
connected component in the underlying undirected graph,
such that:

© checking whether a node is in G takes O(klogo) time.

Q listing the edges incident to a node we are visiting takes O(c)
time, and crossing an edge takes O(1) time.
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Overview of Implementation

K-mer representation

Hash function implementation

the BitArray class

IN, OUT, and forest implementation
Forest construction procedure
Membership query procedure

Dynamic edges (Partially complete)
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Implementation

Overview of Implementation

K-mer representation

Hash function implementation

the BitArray class

IN, OUT, and forest implementation
Forest construction procedure
Membership query procedure
Dynamic edges (Partially complete)
Dynamic nodes (May not get to this)

“Semi-dynamic De Bruijn Graph”
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K-mer representation

@ Our program takes as input a fasta file and a kmer size, and
constructs the data structure

https://github.com/Kingsford-Group/kbf
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K-mer representation

@ Our program takes as input a fasta file and a kmer size, and
constructs the data structure

@ We use KBF! library in order to read in all kmers of length K
and K+1

https://github.com/Kingsford-Group/kbf
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K-mer representation

@ Our program takes as input a fasta file and a kmer size, and
constructs the data structure

@ We use KBF! library in order to read in all kmers of length K
and K+1
@ Each kmer is represented as an 64 bit integer where pairs of

consecutive bits represent letters A =00, C =01, G = 10,
and T =11.

https://github.com/Kingsford-Group/kbf
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Implementation

K-mer representation

@ Our program takes as input a fasta file and a kmer size, and
constructs the data structure

@ We use KBF! library in order to read in all kmers of length K
and K+1

@ Each kmer is represented as an 64 bit integer where pairs of
consecutive bits represent letters A =00, C =01, G = 10,
and T =11.

o Example:
Zeros 2K bits

—
0000---11100100 = TGCA
64T)its

https://github.com/Kingsford-Group/kbf
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Building the Hash Function

@ Recall: hash function f maps K-mer m to {0, ..., n — 1} where
n is the number of kmers in the graph.

@ Recall: the hash function is a minimal perfect hash function
composed with a Karp-Rabin hash function.
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Implementation

Building the Hash Function

@ Recall: hash function f maps K-mer m to {0, ..., n — 1} where
n is the number of kmers in the graph.

@ Recall: the hash function is a minimal perfect hash function
composed with a Karp-Rabin hash function.

@ How do we construct the Karp-Rabin hash function?
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o For the prime P, pick the smallest prime greater than Kn?.

%http:/ /www.boost.org/
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o For the prime P, pick the smallest prime greater than Kn?.
@ Pick a random number r in {1,..., P} for the base

%http:/ /www.boost.org/
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Building the Karp-Rabin Hash Function

o For the prime P, pick the smallest prime greater than Kn?.
@ Pick a random number r in {1,..., P} for the base
@ Test if this Karp-Rabin hash is injective on the set of K-mers

%http:/ /www.boost.org/
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Building the Karp-Rabin Hash Function

For the prime P, pick the smallest prime greater than Kn?.
Pick a random number r in {1, ..., P} for the base

Test if this Karp-Rabin hash is injective on the set of K-mers
If not injective, try a new base r.

%http:/ /www.boost.org/
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Building the Karp-Rabin Hash Function

For the prime P, pick the smallest prime greater than Kn?.
Pick a random number r in {1, ..., P} for the base

Test if this Karp-Rabin hash is injective on the set of K-mers
If not injective, try a new base r.

Powers of r: r,r%,...,rK mod P are precomputed and stored
for use in Karp-Rabin computation — O(K) computation time

%http:/ /www.boost.org/
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Implementation

Building the Karp-Rabin Hash Function

For the prime P, pick the smallest prime greater than Kn?.
Pick a random number r in {1, ..., P} for the base

Test if this Karp-Rabin hash is injective on the set of K-mers
If not injective, try a new base r.

Powers of r: r,r%,...,rK mod P are precomputed and stored
for use in Karp-Rabin computation — O(K) computation time
e Even though P and powers can be stored (barely) in 64-bit
integer, computation requires slow 128-bit arithmetic, for
which we used Boost? library type.

%http:/ /www.boost.org/
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Implementation

Building the Karp-Rabin Hash Function

For the prime P, pick the smallest prime greater than Kn?.

Pick a random number r in {1, ..., P} for the base

Test if this Karp-Rabin hash is injective on the set of K-mers

If not injective, try a new base r.

Powers of r: r,r%,...,rK mod P are precomputed and stored

for use in Karp-Rabin computation — O(K) computation time

e Even though P and powers can be stored (barely) in 64-bit
integer, computation requires slow 128-bit arithmetic, for
which we used Boost? library type.

@ For K =27 on E. coli, lower bound for prime is

16584693176107222092.

Max value in unsigned 64-bit integer:

18446744073709551615.
2http://www.boost.org/
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@ Recall: A minimal perfect hash function on a set A of size n is
a hash function that maps elements of A injectively to the set
{0,...,n—1}.

3https://github.com /rizkg/BBHash
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@ Recall: A minimal perfect hash function on a set A of size n is
a hash function that maps elements of A injectively to the set
{0,...,n—1}.

@ In our case, A is Karp-Rabin values

@ We use the BBHash? library to build a minimal perfect hash
function on the image of our kmers under the Karp-Rabin
hash.

3https://github.com /rizkg/BBHash



Fully Dynamic de Bruijn Graphs

Implementation

Building the Hash Function

@ Recall: A minimal perfect hash function on a set A of size n is
a hash function that maps elements of A injectively to the set
{0,...,n—1}.

@ In our case, A is Karp-Rabin values

@ We use the BBHash? library to build a minimal perfect hash
function on the image of our kmers under the Karp-Rabin
hash.

@ We store our base r, the prime P, and our MPHF object from
BBHash, and we can now hash any kmer to {0, ...,n — 1}.

3https://github.com /rizkg/BBHash



Fully Dynamic de Bruijn Graphs

Implementation

Building the Hash Function

@ Recall: A minimal perfect hash function on a set A of size n is
a hash function that maps elements of A injectively to the set
{0,...,n—1}.

@ In our case, A is Karp-Rabin values

@ We use the BBHash? library to build a minimal perfect hash
function on the image of our kmers under the Karp-Rabin
hash.

@ We store our base r, the prime P, and our MPHF object from
BBHash, and we can now hash any kmer to {0,...,n — 1}.

@ Note that the hash function can hash any kmer, but is
bijective when restricted to kmers that actually exist in our De
Bruijn graph.

3https://github.com /rizkg/BBHash
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Implementation

Building the Hash Function

@ Recall: A minimal perfect hash function on a set A of size n is
a hash function that maps elements of A injectively to the set
{0,...,n—1}.

@ In our case, A is Karp-Rabin values

@ We use the BBHash? library to build a minimal perfect hash
function on the image of our kmers under the Karp-Rabin
hash.

@ We store our base r, the prime P, and our MPHF object from
BBHash, and we can now hash any kmer to {0,...,n — 1}.

@ Note that the hash function can hash any kmer, but is
bijective when restricted to kmers that actually exist in our De
Bruijn graph.

@ That completes the generation of the hash function.

3https://github.com /rizkg/BBHash
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Construction of Hash function

1: procedure GENERATEHASH
InputS, a set of n k-tuples over an alphabet > of size o

2: R = max(o, kn?)

3: P = getPrime(R)

4: r = randomNumber(0, P — 1)

5: f = rabinHash(r, P)

6: while isInjective(f, S) is FALSE do
7: r = randomNumber(0, P — 1)
8: f = rabinHash(r, P)

o: end while

10: g = minimalPerfectHash(7(S)) ;
11: return gof ;

12: end procedure
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o If we have a K-mer m, and its (Karp-Rabin) hash value f(m),
suppose we want to move to a neighbor K-mer n and get its
hash value f(n);
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o If we have a K-mer m, and its (Karp-Rabin) hash value f(m),
suppose we want to move to a neighbor K-mer n and get its
hash value f(n);

@ We can update the KR value in O(1) rather than recomputing
from scratch in O(K).

o For example, if nis an OUT-neighbor with letter /ast, and m
starts with letter first:

(f(m) — first - r)

f(n) = . + last - r¥
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Updating a Karp-Rabin value

o If we have a K-mer m, and its (Karp-Rabin) hash value f(m),
suppose we want to move to a neighbor K-mer n and get its
hash value f(n);

@ We can update the KR value in O(1) rather than recomputing
from scratch in O(K).

o For example, if nis an OUT-neighbor with letter /ast, and m
starts with letter first:

(f(m) — first - r)

f(n) = . + last - r¥

@ What is the problem with naively implementing this update?
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@ First problem is that since f(m) was computed mod P, first
term might be negative.
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store it. (Requires generalized Euclidean algorithm)
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term might be negative.
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@ Solution to second problem: precompute r~! mod P and
store it. (Requires generalized Euclidean algorithm)

@ Solution to first problem? Hint: What is P mod P?
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f(n) = ) _rfm ) | past - K

@ First problem is that since f(m) was computed mod P, first
term might be negative.

@ Second problem is we can't use the ordinary division algorithm
modulo P.

@ Solution to second problem: precompute r~! mod P and
store it. (Requires generalized Euclidean algorithm)

@ Solution to first problem? Hint: What is P mod P?
e Add (4P —first- r) to f(m), as this will always be nonnegative.
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@ How to store bits compactly?
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@ How to store bits compactly?
@ In C++, bool type takes at least 1 byte.

@ Therefore, an array of bools wastes 7 unused bits for each
stored bit.

@ In order to make our data structure as compact as possible, we
implemented a BitArray class that is used in multiple places.

o A BitArray essentially is an array of 32-bit ints where we
access individual bits of data by bitwise operations.

@ Each bit of an integer is treated as an element in the array
and can be set, returned as a bool, etc..

@ This will slow data access down since multiple operations are
required for each access, but much more memory efficient.
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int 1
—
——
int 0

e access(33):
o First computes int index: 33/32 =1
o Next compute which bit in this int: 33 = 1(mod32)
e To get value of this bit, shift it to right-most position and do
bitwise AND with 00...1.
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e Example with two ints (each containing 32 bits).

int 1
—
——
int 0

e access(33):

o First computes int index: 33/32 =1

o Next compute which bit in this int: 33 = 1(mod32)

e To get value of this bit, shift it to right-most position and do
bitwise AND with 00...1.

o With this class, only waste at most 31 bits in memory per
instance of the class.
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Building IN and OUT

@ IN and OUT are binary matrices of size n (number of kmers)
by o (the size of our alphabet, 4) that store edge information.

@ The rows are hash values (representing each node) and the
columns represent letters.

@ We store all entries in single BitArray of size n- 0.

@ So we guarantee to use only no + 31 bits of memory for each
of IN,OUT.

@ To construct, simply read through edge k 4+ 1-mers and set
the correct index of each of IN, OUT.
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@ The forest is stored as a BitArray and a map of root hash
values to their kmers.

@ Each node in the graph has 4 consecutive bits in the bit array.
@ The nodes are in the BitArray in order of their hash values.

@ For each node, the first bit tells if that node is a root or not,
the second tells whether the parent in the forest is accessed
via IN or OUT, and the last two tells the letter that one needs
to get to the parent.

e Example:

Data for node i

——
- .- Other nodes data---01001--- 0 1 01
N

root? IN? Letter
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The Forest Data Structure

@ Using the data for the forest, and an initial kmer sequence, we
can traverse the forest from any node up to its root.

@ For example, suppose we have initial kmer "ATTGA”, we
hash it and find data 0011 in the forest for this kmer.

@ So that means our kmer is not a root (so a parent exists), its
parent is accessed via an OUT edge, and the letter " T" is how
we get to the parent.

@ Therefore the parent's kmer is " TTGAT"

@ This is how we will do membership queries (explained more
later).
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Building the Forest

@ That was how the forest is stored, but how do we build it?

@ We want a forest that covers all of the nodes in our De Bruijn
graph

@ Each tree should be between height o and 3 where
a=klogo.

@ Each tree has a root, and the kmer of that root is stored.

@ We do a breadth first search of the De Bruijn graph ignoring
edge directions.

@ We break the graph up into trees in the desired height range
as we go along.
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Building the Forest

Before this point, the forest has been initialized to be a BitArray
of the correct size and an empty map of root kmers.

@ First, we choose a kmer in ()
our De Bruijn graph that
has not yet been explored.

@ Hash it to find its place in
the forest's BitArray.

@ Store it as being a root,
its IN/OUT and parent
bits are left alone since it
has no parent.

@ Add its hash
and kmer to the map.
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De Bruijn breadth first search

o We
use IN and OUT to find
all the kmers of neighbors
in the De Bruijn graph.

@ Get hash values of
neighbor kmers, find their
places in the forest's BitArray.
@ Store the letter and
IN/OUT data to get to
the parent (pink).
@ Set the root bit to false,
and don't store these
kmers.
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De Bruijn breadth first search

@ Keep doing that
until we get to a kmer
that is of height a+1
from the root (orange)

@ Save the kmers of these,
but don't store them
in the forest just yet.

o If we get to a height over
the maximum allowed, we
can break off at this root
and be sure the remaining tree's height is still above the
minimum allowed.
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we need a new tree.

@ We have saved the
kmer of the potential root
found in the last part.
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De Bruijn breadth first search

@ Once we get to a kmer
that is of height 3ac + 1
from the root (yellow),
we need a new tree.

@ We have saved the
kmer of the potential root
found in the last part.

@ We break a new tree
off at the potential root ...
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De Bruijn breadth first search

@ In the forest data
structure, set the potential
node as a root and
put its kmer in the map.

@ Reset the height we
are at for the new root.

@ Continue on until the
entire De Bruijn graph has
been visited.
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@ We have now constructed the hash function, IN and OUT,
and the forest.

@ That was the entire data structure, we no longer need all
those kmers.
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@ This data structure allows us to do membership queries
without errors.

@ Suppose we have a nucleotide sequence of length k and we
want to find if it exists

@ The only kmers that we have stored are the kmers of the
roots in our tree.

@ How do we check the membership of that kmer?

We travel up the tree to the root ...



Fully Dynamic de Bruijn Graphs

Implementation

Membership Query

Membership of "ATTC"

o First, hash the kmer ATTC
to get i in {0,...,n— 1}



Fully Dynamic de Bruijn Graphs

Implementation

Membership Query

Membership of "ATTC"

o First, hash the kmer ATTC
to get i in {0,...,n— 1}

@ Find the place
corresponding to this
hash value in the forest.



Fully Dynamic de Bruijn Graphs

Implementation

Membership Query

Membership of "ATTC"

@ First, hash the kmer ATTC
to get i in {0,...,n— 1}

@ Find the place
corresponding to this
hash value in the forest.

o Note:
Even if the kmer is not
in our De Bruijn graph,
we can still hash it and
get a place in the forest.
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Membership of "ATTC"

@ Use the forest data and ATTC
"ATTC" to do a hash update
and find the parent in the forest.

o Check IN
and OUT whether such an edge
exists. Return false if it doesn't.

e Why
would that possibly return false?

@ It's possible that the hash for
"GATT" doesn’t have an OUT
edge for " C", therefore "ATTC"
can't possibly be an actual kmer.

GATT
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o Keep doing ATTC
this until we arrive at a root
@ The root has its kmer stored
@ Compare the kmer
we have from moving up the
tree with the kmer that is stored
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o Keep doing ATTC
this until we arrive at a root

@ The root has its kmer stored

@ Compare the kmer
we have from moving up the
tree with the kmer that is stored
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o If it matches, return

true. Otherwise, return false. ATT
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Membership of "ATTC"

Keep doing ATTC
this until we arrive at a root

@ The root has its kmer stored

@ Compare the kmer

. GATT
we have from moving up the

tree with the kmer that is stored

If it matches, return

true. Otherwise, return false. ATT
Which would take longer

on average, membership queries

that return true or queries that

return false?

Queries that return true
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Implementation

Dynamic De Bruijn Graph

@ We have (almost) implemented edge addition and removal.

@ We have not implemented node addition and removal. The
primary difficulty is having a dynamic hash function.

@ We rely on the library BBHash for our minimal perfect hash
function, but we need a dynamic perfect hash function.
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Dynamic Edges

o We will go over the case where we would like to add an edge
to the De Bruijn graph.

o First, we add an entry to IN and OUT to reflect the edge.
@ Do we do anything to the forest?

@ This would affect the forest if the edge is between two graph
components where at least one was not big enough to have a
tree above the minimum height.

@ We may be able to combine the trees so that we have trees
with heights in the desired range.
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Adding an Edge

@ Suppose that
the edge (dotted) is between
two trees in the forest below the
minimum height, shown in (a).
@ We can combine

the trees into one tree of
height less than the maximum.

@ You have to add another edge to
the forest, reverse the direction (a) (b)
of some forest edges, then
get rid of one of the tree's roots.
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Adding an Edge

@ Now suppose that .
only one of the trees are below

the desired minimum height

and we add an edge (dotted).
@ What we do depends

on the height of the node

in the edge from the taller tree.
o If the height

is less than «, we can change

the trees similar to before.
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(a) Height < (b)
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Dynamic Edges

Adding an Edge

@ Now suppose that the height
is greater than or equal to «

@ We can't necessarily just
combine the trees like before, we
could end up with a tree greater
than the maximum height.

@ We break off some part of
the bigger tree into the smaller.
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Ty

) Height > «
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Removing Edges

We can also remove edges from our De Bruijn data structure
If the edge is not in our tree, we don't need to do anything.
If the edge is in our tree, then removing it breaks up a tree.
We need to find a new root for one of the trees

If a tree is too short, use similar techniques to above to
produce a taller tree.
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Experiments

Datasets:
Dataset | Chromosomes Read count Read length Size
5288C* 17 - - 12M
E. coli 1 27 -10° 101 3.3G
Platform:
e Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz (18 cores) with
396 GB RAM

The results are tested by one run, which could be affected by
computational resource conflicts.

*http://www.yeastgenome.org/strain/S288C/overview
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Live Demo

@ We have developed a web-based demo to allow users do
multiple types of comparisons, which makes the evaluation
easier.

@ The link is here: http://128.227.162.189:9999/. Visit
and play with it!

Fully Dynamic de Bruijn Graph Running Demo

This demo runs some examples and compare resuts.
Kvalue:
2
# of queries:
m
Dataset:

yeast


http://128.227.162.189:9999/
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Comparative Algorithms

@ Bloom Filter: Standard Bloom filter

@ KBF1: One-sided Bloom filter improves false postive rate
three fold without using any additional storage.

© KBF2: Two-sided Bloom filter improves FPR by an order of
magnitude while using very little additional memory®.

®https://github.com/Kingsford-Group/kbf
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Query k-mer Generation

@ We generate query k-mers with three different number of
queries:

- 1 2 3
number of queries (million) 0.5 1 10

© We use two random ways to generate query k-mers
e Muting one base of randomly extracted from the input k-mers

o Purelyrandom—k-mer-generation- However, it does not result

in obvious difference compared with the first one.
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FDBG Data Structure Information

Table : The FDBG data structure information on E coli.

k k-mers RAM (MB) Trees Avg. height
20 | 770,956,037 1,485 5,492,320 48.14
24 | 784,990,222 1,519 6,412,386 50.45
27 | 783,739,686 1,517 6,532,142 47.28
30 | 776,321,600 1,505 6,752,622 48.46

@ RAM = IN and OUT matrices + forest + minimal perfect
hashing
@ An example when
k =20, N = 770956037, R = 5492320,0 = 4 :
N x o x 24 (N x4+ R x%64)+ mph

= (735 + (367 + 335) + 48)MB x (bit/ MB)
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Populate Time w.r.t k

Populate time

12200 Fully Dynamic de Bruijn Graph 800 BF
12000
11800 750
~ 11600 —
2 11400 2 700
£ 11200 £ 650
= 11000 =
10800 600
10600
10400 550
20 22 24 26 28 30 20 22 24 26 28 30
K K
800 KBF1 760 KBF2
750 740
. 700 . 720
£ 650 £ 700
£ 600 £ 680
" 550 " 660
500 640
450 620
20 22 24 26 28 30 20 22 24 26 28 30
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Query Accuracy w.r.t k

Query Accuracy
Fully Dynamic de Bruijn Graph

106 0.05 +9.671el BF
_ 104 _00s
< 102 s
> >
3 100 5003
5 5
3 98 3 0.02
< 9% <
0.01
94
20 22 24 26 28 30 20 22 24 26 28 30
K K
99.06 KBFL 0.040 *9-988el KBF2
99.04 0.035
£ 99.02 £ 0.030
3 99.00 5 0.025
€ 98.98 € 0.020
S 98.96 $ 0015
98.94 0.010
98.92 0.005
20 22 24 26 28 30 20 22 24 26 28 30
K
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Query Time w.r.t k

Query time
95 Fully Dynamic de Bruijn Graph 0.70 BF
9.0 0.65
85 _
2380 ©0.60
€75 g
£ £ 055
7.0 .
6.5 0.50
6.0 0.45
20 22 24 26 28 30 20 22 24 26 28 30
K K
KBF1 0.80 KBF2
10 0.75
> 0.8 @ 0.70
Eos g0
= = 0.60
04 0.55
0.2 0.50
20 22 24 26 28 20 22 24 26 28 30
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Query Time w.r.t Tree Height

Table : Query time w.r.t the tree height.

k | Avg. height Query time (s)
20 48.14 6.69 ©
24 50.45 7.51
27 47.28 6.43
30 48.46 6.93

Lower tree height gives rive to lower query time, because it needs
fewer steps to trace the tree.

®Averaged by two runs.
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Query Time w.r.t Number of Queries

Query time
40 Fully Dynamic de Bruijn Graph 25 BF
35
30 20
325 Z21s5
@ 20 @
Eis E10
10 05
5
0 0.0
0.5M M 10M 0.5M Y 10M
# of queries # of queries
35 KBF1 35 KBF2
3.0 3.0
25 25
220 220
£15 £ 15
10 T 10
0.5 0.5
0.0 0.0
0.5M M 10M 0.5M M 10M

# of queries # of queries
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Conclusion

© Have implemented static De Bruijn graph data structure and
will complete edge insertion and deletion.

@ Have tested the algorithms on two gene datasets. Compared
with all Bloom filter based methods, ours has exactly 100%
accuracy.

© Have compared with three different methods.

© Have made a website and a live demo.
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End

Thanks and Questions?
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